An alternative mechanism of clathrin-coated pit closure revealed by ion conductance microscopy

نویسندگان

  • Andrew I. Shevchuk
  • Pavel Novak
  • Marcus Taylor
  • Ivan A. Diakonov
  • Azza Ziyadeh-Isleem
  • Marc Bitoun
  • Pascale Guicheney
  • Max J. Lab
  • Julia Gorelik
  • Christien J. Merrifield
  • David Klenerman
  • Yuri E. Korchev
چکیده

Current knowledge of the structural changes taking place during clathrin-mediated endocytosis is largely based on electron microscopy images of fixed preparations and x-ray crystallography data of purified proteins. In this paper, we describe a study of clathrin-coated pit dynamics in living cells using ion conductance microscopy to directly image the changes in pit shape, combined with simultaneous confocal microscopy to follow molecule-specific fluorescence. We find that 70% of pits closed with the formation of a protrusion that grew on one side of the pit, covered the entire pit, and then disappeared together with pit-associated clathrin-enhanced green fluorescent protein (EGFP) and actin-binding protein-EGFP (Abp1-EGFP) fluorescence. This was in contrast to conventionally closing pits that closed and cleaved from flat membrane sheets and lacked accompanying Abp1-EGFP fluorescence. Scission of both types of pits was found to be dynamin-2 dependent. This technique now enables direct spatial and temporal correlation between functional molecule-specific fluorescence and structural information to follow key biological processes at cell surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit

Dynamin, the GTPase required for clathrin-mediated endocytosis, is recruited to clathrin-coated pits in two sequential phases. The first is associated with coated pit maturation; the second, with fission of the membrane neck of a coated pit. Using gene-edited cells that express dynamin2-EGFP instead of dynamin2 and live-cell TIRF imaging with single-molecule EGFP sensitivity and high temporal r...

متن کامل

Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation

The clathrin-coated pit lattice is held onto the plasma membrane by an integral membrane protein that binds the clathrin AP-2 subunit with high affinity. In vitro studies have suggested that this protein controls the assembly of the pit because membrane bound AP-2 is required for lattice assembly. If so, the AP-2 binding site must be a resident protein of the coated pit and recycle with other r...

متن کامل

Stochastic model of clathrin-coated pit assembly.

In recent years, fluorescence microscopy has enabled researchers to observe the dynamics of clathrin-coated pit (CCP) assembly in real time. The assembly dynamics of CCPs shows striking heterogeneity. Some CCPs are long-lived (productive CCPs); they bind cargo and grow in size to form clathrin-coated vesicles. In contrast, other CCPs (abortive CCPs) are relatively short-lived and disassemble we...

متن کامل

Roles of AP-2 in Clathrin-Mediated Endocytosis

BACKGROUND The notion that AP-2 clathrin adaptor is an essential component of an endocytic clathrin coat appears to conflict with recent observations that substantial AP-2 depletion, using RNA interference with synthesis of AP-2 subunits, fails to block uptake of certain ligands known to internalize through a clathrin-based pathway. METHODOLOGY/PRINCIPAL FINDINGS We report here the use of in ...

متن کامل

A novel role for Rab5–GDI in ligand sequestration into clathrin-coated pits

BACKGROUND Clathrin-coated pits are formed at the plasma membrane by the assembly of the coat components, namely clathrin and adaptors from the cytosol. Little is known about the regulation and mechanism of this assembly process. RESULTS We have used an in vitro assay for clathrin-coated pit assembly to identify a novel component required for the invagination of newly formed coated pits. We h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 197  شماره 

صفحات  -

تاریخ انتشار 2012